3.71 \(\int \frac {(d+e x)^3 (d^2-e^2 x^2)^{5/2}}{x} \, dx\)

Optimal. Leaf size=190 \[ \frac {1}{240} d^2 (48 d+125 e x) \left (d^2-e^2 x^2\right )^{5/2}-\frac {3}{7} d \left (d^2-e^2 x^2\right )^{7/2}-\frac {1}{8} e x \left (d^2-e^2 x^2\right )^{7/2}+\frac {125}{128} d^8 \tan ^{-1}\left (\frac {e x}{\sqrt {d^2-e^2 x^2}}\right )-d^8 \tanh ^{-1}\left (\frac {\sqrt {d^2-e^2 x^2}}{d}\right )+\frac {1}{128} d^6 (128 d+125 e x) \sqrt {d^2-e^2 x^2}+\frac {1}{192} d^4 (64 d+125 e x) \left (d^2-e^2 x^2\right )^{3/2} \]

[Out]

1/192*d^4*(125*e*x+64*d)*(-e^2*x^2+d^2)^(3/2)+1/240*d^2*(125*e*x+48*d)*(-e^2*x^2+d^2)^(5/2)-3/7*d*(-e^2*x^2+d^
2)^(7/2)-1/8*e*x*(-e^2*x^2+d^2)^(7/2)+125/128*d^8*arctan(e*x/(-e^2*x^2+d^2)^(1/2))-d^8*arctanh((-e^2*x^2+d^2)^
(1/2)/d)+1/128*d^6*(125*e*x+128*d)*(-e^2*x^2+d^2)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.31, antiderivative size = 190, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 8, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.296, Rules used = {1809, 815, 844, 217, 203, 266, 63, 208} \[ \frac {1}{128} d^6 (128 d+125 e x) \sqrt {d^2-e^2 x^2}+\frac {1}{192} d^4 (64 d+125 e x) \left (d^2-e^2 x^2\right )^{3/2}+\frac {1}{240} d^2 (48 d+125 e x) \left (d^2-e^2 x^2\right )^{5/2}-\frac {3}{7} d \left (d^2-e^2 x^2\right )^{7/2}-\frac {1}{8} e x \left (d^2-e^2 x^2\right )^{7/2}+\frac {125}{128} d^8 \tan ^{-1}\left (\frac {e x}{\sqrt {d^2-e^2 x^2}}\right )-d^8 \tanh ^{-1}\left (\frac {\sqrt {d^2-e^2 x^2}}{d}\right ) \]

Antiderivative was successfully verified.

[In]

Int[((d + e*x)^3*(d^2 - e^2*x^2)^(5/2))/x,x]

[Out]

(d^6*(128*d + 125*e*x)*Sqrt[d^2 - e^2*x^2])/128 + (d^4*(64*d + 125*e*x)*(d^2 - e^2*x^2)^(3/2))/192 + (d^2*(48*
d + 125*e*x)*(d^2 - e^2*x^2)^(5/2))/240 - (3*d*(d^2 - e^2*x^2)^(7/2))/7 - (e*x*(d^2 - e^2*x^2)^(7/2))/8 + (125
*d^8*ArcTan[(e*x)/Sqrt[d^2 - e^2*x^2]])/128 - d^8*ArcTanh[Sqrt[d^2 - e^2*x^2]/d]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 815

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[((d + e*x)^(
m + 1)*(c*e*f*(m + 2*p + 2) - g*c*d*(2*p + 1) + g*c*e*(m + 2*p + 1)*x)*(a + c*x^2)^p)/(c*e^2*(m + 2*p + 1)*(m
+ 2*p + 2)), x] + Dist[(2*p)/(c*e^2*(m + 2*p + 1)*(m + 2*p + 2)), Int[(d + e*x)^m*(a + c*x^2)^(p - 1)*Simp[f*a
*c*e^2*(m + 2*p + 2) + a*c*d*e*g*m - (c^2*f*d*e*(m + 2*p + 2) - g*(c^2*d^2*(2*p + 1) + a*c*e^2*(m + 2*p + 1)))
*x, x], x], x] /; FreeQ[{a, c, d, e, f, g, m}, x] && NeQ[c*d^2 + a*e^2, 0] && GtQ[p, 0] && (IntegerQ[p] ||  !R
ationalQ[m] || (GeQ[m, -1] && LtQ[m, 0])) &&  !ILtQ[m + 2*p, 0] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*
m, 2*p])

Rule 844

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[g/e, Int[(d
+ e*x)^(m + 1)*(a + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a,
c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IGtQ[m, 0]

Rule 1809

Int[(Pq_)*((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{q = Expon[Pq, x], f = Coeff[Pq, x,
 Expon[Pq, x]]}, Simp[(f*(c*x)^(m + q - 1)*(a + b*x^2)^(p + 1))/(b*c^(q - 1)*(m + q + 2*p + 1)), x] + Dist[1/(
b*(m + q + 2*p + 1)), Int[(c*x)^m*(a + b*x^2)^p*ExpandToSum[b*(m + q + 2*p + 1)*Pq - b*f*(m + q + 2*p + 1)*x^q
 - a*f*(m + q - 1)*x^(q - 2), x], x], x] /; GtQ[q, 1] && NeQ[m + q + 2*p + 1, 0]] /; FreeQ[{a, b, c, m, p}, x]
 && PolyQ[Pq, x] && ( !IGtQ[m, 0] || IGtQ[p + 1/2, -1])

Rubi steps

\begin {align*} \int \frac {(d+e x)^3 \left (d^2-e^2 x^2\right )^{5/2}}{x} \, dx &=-\frac {1}{8} e x \left (d^2-e^2 x^2\right )^{7/2}-\frac {\int \frac {\left (d^2-e^2 x^2\right )^{5/2} \left (-8 d^3 e^2-25 d^2 e^3 x-24 d e^4 x^2\right )}{x} \, dx}{8 e^2}\\ &=-\frac {3}{7} d \left (d^2-e^2 x^2\right )^{7/2}-\frac {1}{8} e x \left (d^2-e^2 x^2\right )^{7/2}+\frac {\int \frac {\left (56 d^3 e^4+175 d^2 e^5 x\right ) \left (d^2-e^2 x^2\right )^{5/2}}{x} \, dx}{56 e^4}\\ &=\frac {1}{240} d^2 (48 d+125 e x) \left (d^2-e^2 x^2\right )^{5/2}-\frac {3}{7} d \left (d^2-e^2 x^2\right )^{7/2}-\frac {1}{8} e x \left (d^2-e^2 x^2\right )^{7/2}-\frac {\int \frac {\left (-336 d^5 e^6-875 d^4 e^7 x\right ) \left (d^2-e^2 x^2\right )^{3/2}}{x} \, dx}{336 e^6}\\ &=\frac {1}{192} d^4 (64 d+125 e x) \left (d^2-e^2 x^2\right )^{3/2}+\frac {1}{240} d^2 (48 d+125 e x) \left (d^2-e^2 x^2\right )^{5/2}-\frac {3}{7} d \left (d^2-e^2 x^2\right )^{7/2}-\frac {1}{8} e x \left (d^2-e^2 x^2\right )^{7/2}+\frac {\int \frac {\left (1344 d^7 e^8+2625 d^6 e^9 x\right ) \sqrt {d^2-e^2 x^2}}{x} \, dx}{1344 e^8}\\ &=\frac {1}{128} d^6 (128 d+125 e x) \sqrt {d^2-e^2 x^2}+\frac {1}{192} d^4 (64 d+125 e x) \left (d^2-e^2 x^2\right )^{3/2}+\frac {1}{240} d^2 (48 d+125 e x) \left (d^2-e^2 x^2\right )^{5/2}-\frac {3}{7} d \left (d^2-e^2 x^2\right )^{7/2}-\frac {1}{8} e x \left (d^2-e^2 x^2\right )^{7/2}-\frac {\int \frac {-2688 d^9 e^{10}-2625 d^8 e^{11} x}{x \sqrt {d^2-e^2 x^2}} \, dx}{2688 e^{10}}\\ &=\frac {1}{128} d^6 (128 d+125 e x) \sqrt {d^2-e^2 x^2}+\frac {1}{192} d^4 (64 d+125 e x) \left (d^2-e^2 x^2\right )^{3/2}+\frac {1}{240} d^2 (48 d+125 e x) \left (d^2-e^2 x^2\right )^{5/2}-\frac {3}{7} d \left (d^2-e^2 x^2\right )^{7/2}-\frac {1}{8} e x \left (d^2-e^2 x^2\right )^{7/2}+d^9 \int \frac {1}{x \sqrt {d^2-e^2 x^2}} \, dx+\frac {1}{128} \left (125 d^8 e\right ) \int \frac {1}{\sqrt {d^2-e^2 x^2}} \, dx\\ &=\frac {1}{128} d^6 (128 d+125 e x) \sqrt {d^2-e^2 x^2}+\frac {1}{192} d^4 (64 d+125 e x) \left (d^2-e^2 x^2\right )^{3/2}+\frac {1}{240} d^2 (48 d+125 e x) \left (d^2-e^2 x^2\right )^{5/2}-\frac {3}{7} d \left (d^2-e^2 x^2\right )^{7/2}-\frac {1}{8} e x \left (d^2-e^2 x^2\right )^{7/2}+\frac {1}{2} d^9 \operatorname {Subst}\left (\int \frac {1}{x \sqrt {d^2-e^2 x}} \, dx,x,x^2\right )+\frac {1}{128} \left (125 d^8 e\right ) \operatorname {Subst}\left (\int \frac {1}{1+e^2 x^2} \, dx,x,\frac {x}{\sqrt {d^2-e^2 x^2}}\right )\\ &=\frac {1}{128} d^6 (128 d+125 e x) \sqrt {d^2-e^2 x^2}+\frac {1}{192} d^4 (64 d+125 e x) \left (d^2-e^2 x^2\right )^{3/2}+\frac {1}{240} d^2 (48 d+125 e x) \left (d^2-e^2 x^2\right )^{5/2}-\frac {3}{7} d \left (d^2-e^2 x^2\right )^{7/2}-\frac {1}{8} e x \left (d^2-e^2 x^2\right )^{7/2}+\frac {125}{128} d^8 \tan ^{-1}\left (\frac {e x}{\sqrt {d^2-e^2 x^2}}\right )-\frac {d^9 \operatorname {Subst}\left (\int \frac {1}{\frac {d^2}{e^2}-\frac {x^2}{e^2}} \, dx,x,\sqrt {d^2-e^2 x^2}\right )}{e^2}\\ &=\frac {1}{128} d^6 (128 d+125 e x) \sqrt {d^2-e^2 x^2}+\frac {1}{192} d^4 (64 d+125 e x) \left (d^2-e^2 x^2\right )^{3/2}+\frac {1}{240} d^2 (48 d+125 e x) \left (d^2-e^2 x^2\right )^{5/2}-\frac {3}{7} d \left (d^2-e^2 x^2\right )^{7/2}-\frac {1}{8} e x \left (d^2-e^2 x^2\right )^{7/2}+\frac {125}{128} d^8 \tan ^{-1}\left (\frac {e x}{\sqrt {d^2-e^2 x^2}}\right )-d^8 \tanh ^{-1}\left (\frac {\sqrt {d^2-e^2 x^2}}{d}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.36, size = 168, normalized size = 0.88 \[ d^8 \left (-\tanh ^{-1}\left (\frac {\sqrt {d^2-e^2 x^2}}{d}\right )\right )+\frac {125 d^7 \sqrt {d^2-e^2 x^2} \sin ^{-1}\left (\frac {e x}{d}\right )}{128 \sqrt {1-\frac {e^2 x^2}{d^2}}}+\frac {\sqrt {d^2-e^2 x^2} \left (14848 d^7+27195 d^6 e x+7424 d^5 e^2 x^2-17710 d^4 e^3 x^3-14592 d^3 e^4 x^4+1960 d^2 e^5 x^5+5760 d e^6 x^6+1680 e^7 x^7\right )}{13440} \]

Antiderivative was successfully verified.

[In]

Integrate[((d + e*x)^3*(d^2 - e^2*x^2)^(5/2))/x,x]

[Out]

(Sqrt[d^2 - e^2*x^2]*(14848*d^7 + 27195*d^6*e*x + 7424*d^5*e^2*x^2 - 17710*d^4*e^3*x^3 - 14592*d^3*e^4*x^4 + 1
960*d^2*e^5*x^5 + 5760*d*e^6*x^6 + 1680*e^7*x^7))/13440 + (125*d^7*Sqrt[d^2 - e^2*x^2]*ArcSin[(e*x)/d])/(128*S
qrt[1 - (e^2*x^2)/d^2]) - d^8*ArcTanh[Sqrt[d^2 - e^2*x^2]/d]

________________________________________________________________________________________

fricas [A]  time = 0.88, size = 151, normalized size = 0.79 \[ -\frac {125}{64} \, d^{8} \arctan \left (-\frac {d - \sqrt {-e^{2} x^{2} + d^{2}}}{e x}\right ) + d^{8} \log \left (-\frac {d - \sqrt {-e^{2} x^{2} + d^{2}}}{x}\right ) + \frac {1}{13440} \, {\left (1680 \, e^{7} x^{7} + 5760 \, d e^{6} x^{6} + 1960 \, d^{2} e^{5} x^{5} - 14592 \, d^{3} e^{4} x^{4} - 17710 \, d^{4} e^{3} x^{3} + 7424 \, d^{5} e^{2} x^{2} + 27195 \, d^{6} e x + 14848 \, d^{7}\right )} \sqrt {-e^{2} x^{2} + d^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^3*(-e^2*x^2+d^2)^(5/2)/x,x, algorithm="fricas")

[Out]

-125/64*d^8*arctan(-(d - sqrt(-e^2*x^2 + d^2))/(e*x)) + d^8*log(-(d - sqrt(-e^2*x^2 + d^2))/x) + 1/13440*(1680
*e^7*x^7 + 5760*d*e^6*x^6 + 1960*d^2*e^5*x^5 - 14592*d^3*e^4*x^4 - 17710*d^4*e^3*x^3 + 7424*d^5*e^2*x^2 + 2719
5*d^6*e*x + 14848*d^7)*sqrt(-e^2*x^2 + d^2)

________________________________________________________________________________________

giac [A]  time = 0.26, size = 143, normalized size = 0.75 \[ \frac {125}{128} \, d^{8} \arcsin \left (\frac {x e}{d}\right ) \mathrm {sgn}\relax (d) - d^{8} \log \left (\frac {{\left | -2 \, d e - 2 \, \sqrt {-x^{2} e^{2} + d^{2}} e \right |} e^{\left (-2\right )}}{2 \, {\left | x \right |}}\right ) + \frac {1}{13440} \, {\left (14848 \, d^{7} + {\left (27195 \, d^{6} e + 2 \, {\left (3712 \, d^{5} e^{2} - {\left (8855 \, d^{4} e^{3} + 4 \, {\left (1824 \, d^{3} e^{4} - 5 \, {\left (49 \, d^{2} e^{5} + 6 \, {\left (7 \, x e^{7} + 24 \, d e^{6}\right )} x\right )} x\right )} x\right )} x\right )} x\right )} x\right )} \sqrt {-x^{2} e^{2} + d^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^3*(-e^2*x^2+d^2)^(5/2)/x,x, algorithm="giac")

[Out]

125/128*d^8*arcsin(x*e/d)*sgn(d) - d^8*log(1/2*abs(-2*d*e - 2*sqrt(-x^2*e^2 + d^2)*e)*e^(-2)/abs(x)) + 1/13440
*(14848*d^7 + (27195*d^6*e + 2*(3712*d^5*e^2 - (8855*d^4*e^3 + 4*(1824*d^3*e^4 - 5*(49*d^2*e^5 + 6*(7*x*e^7 +
24*d*e^6)*x)*x)*x)*x)*x)*x)*sqrt(-x^2*e^2 + d^2)

________________________________________________________________________________________

maple [A]  time = 0.01, size = 231, normalized size = 1.22 \[ -\frac {d^{9} \ln \left (\frac {2 d^{2}+2 \sqrt {d^{2}}\, \sqrt {-e^{2} x^{2}+d^{2}}}{x}\right )}{\sqrt {d^{2}}}+\frac {125 d^{8} e \arctan \left (\frac {\sqrt {e^{2}}\, x}{\sqrt {-e^{2} x^{2}+d^{2}}}\right )}{128 \sqrt {e^{2}}}+\frac {125 \sqrt {-e^{2} x^{2}+d^{2}}\, d^{6} e x}{128}+\sqrt {-e^{2} x^{2}+d^{2}}\, d^{7}+\frac {125 \left (-e^{2} x^{2}+d^{2}\right )^{\frac {3}{2}} d^{4} e x}{192}+\frac {\left (-e^{2} x^{2}+d^{2}\right )^{\frac {3}{2}} d^{5}}{3}+\frac {25 \left (-e^{2} x^{2}+d^{2}\right )^{\frac {5}{2}} d^{2} e x}{48}+\frac {\left (-e^{2} x^{2}+d^{2}\right )^{\frac {5}{2}} d^{3}}{5}-\frac {\left (-e^{2} x^{2}+d^{2}\right )^{\frac {7}{2}} e x}{8}-\frac {3 \left (-e^{2} x^{2}+d^{2}\right )^{\frac {7}{2}} d}{7} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^3*(-e^2*x^2+d^2)^(5/2)/x,x)

[Out]

-1/8*e*x*(-e^2*x^2+d^2)^(7/2)+25/48*d^2*e*x*(-e^2*x^2+d^2)^(5/2)+125/192*e*d^4*x*(-e^2*x^2+d^2)^(3/2)+125/128*
e*d^6*x*(-e^2*x^2+d^2)^(1/2)+125/128*e*d^8/(e^2)^(1/2)*arctan((e^2)^(1/2)/(-e^2*x^2+d^2)^(1/2)*x)-3/7*d*(-e^2*
x^2+d^2)^(7/2)+1/5*d^3*(-e^2*x^2+d^2)^(5/2)+1/3*d^5*(-e^2*x^2+d^2)^(3/2)+d^7*(-e^2*x^2+d^2)^(1/2)-d^9/(d^2)^(1
/2)*ln((2*d^2+2*(d^2)^(1/2)*(-e^2*x^2+d^2)^(1/2))/x)

________________________________________________________________________________________

maxima [A]  time = 1.00, size = 204, normalized size = 1.07 \[ \frac {125}{128} \, d^{8} \arcsin \left (\frac {e x}{d}\right ) - d^{8} \log \left (\frac {2 \, d^{2}}{{\left | x \right |}} + \frac {2 \, \sqrt {-e^{2} x^{2} + d^{2}} d}{{\left | x \right |}}\right ) + \frac {125}{128} \, \sqrt {-e^{2} x^{2} + d^{2}} d^{6} e x + \sqrt {-e^{2} x^{2} + d^{2}} d^{7} + \frac {125}{192} \, {\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {3}{2}} d^{4} e x + \frac {1}{3} \, {\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {3}{2}} d^{5} + \frac {25}{48} \, {\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {5}{2}} d^{2} e x + \frac {1}{5} \, {\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {5}{2}} d^{3} - \frac {1}{8} \, {\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {7}{2}} e x - \frac {3}{7} \, {\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {7}{2}} d \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^3*(-e^2*x^2+d^2)^(5/2)/x,x, algorithm="maxima")

[Out]

125/128*d^8*arcsin(e*x/d) - d^8*log(2*d^2/abs(x) + 2*sqrt(-e^2*x^2 + d^2)*d/abs(x)) + 125/128*sqrt(-e^2*x^2 +
d^2)*d^6*e*x + sqrt(-e^2*x^2 + d^2)*d^7 + 125/192*(-e^2*x^2 + d^2)^(3/2)*d^4*e*x + 1/3*(-e^2*x^2 + d^2)^(3/2)*
d^5 + 25/48*(-e^2*x^2 + d^2)^(5/2)*d^2*e*x + 1/5*(-e^2*x^2 + d^2)^(5/2)*d^3 - 1/8*(-e^2*x^2 + d^2)^(7/2)*e*x -
 3/7*(-e^2*x^2 + d^2)^(7/2)*d

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (d^2-e^2\,x^2\right )}^{5/2}\,{\left (d+e\,x\right )}^3}{x} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((d^2 - e^2*x^2)^(5/2)*(d + e*x)^3)/x,x)

[Out]

int(((d^2 - e^2*x^2)^(5/2)*(d + e*x)^3)/x, x)

________________________________________________________________________________________

sympy [C]  time = 47.72, size = 1263, normalized size = 6.65 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**3*(-e**2*x**2+d**2)**(5/2)/x,x)

[Out]

d**7*Piecewise((d**2/(e*x*sqrt(d**2/(e**2*x**2) - 1)) - d*acosh(d/(e*x)) - e*x/sqrt(d**2/(e**2*x**2) - 1), Abs
(d**2/(e**2*x**2)) > 1), (-I*d**2/(e*x*sqrt(-d**2/(e**2*x**2) + 1)) + I*d*asin(d/(e*x)) + I*e*x/sqrt(-d**2/(e*
*2*x**2) + 1), True)) + 3*d**6*e*Piecewise((-I*d**2*acosh(e*x/d)/(2*e) - I*d*x/(2*sqrt(-1 + e**2*x**2/d**2)) +
 I*e**2*x**3/(2*d*sqrt(-1 + e**2*x**2/d**2)), Abs(e**2*x**2/d**2) > 1), (d**2*asin(e*x/d)/(2*e) + d*x*sqrt(1 -
 e**2*x**2/d**2)/2, True)) + d**5*e**2*Piecewise((x**2*sqrt(d**2)/2, Eq(e**2, 0)), (-(d**2 - e**2*x**2)**(3/2)
/(3*e**2), True)) - 5*d**4*e**3*Piecewise((-I*d**4*acosh(e*x/d)/(8*e**3) + I*d**3*x/(8*e**2*sqrt(-1 + e**2*x**
2/d**2)) - 3*I*d*x**3/(8*sqrt(-1 + e**2*x**2/d**2)) + I*e**2*x**5/(4*d*sqrt(-1 + e**2*x**2/d**2)), Abs(e**2*x*
*2/d**2) > 1), (d**4*asin(e*x/d)/(8*e**3) - d**3*x/(8*e**2*sqrt(1 - e**2*x**2/d**2)) + 3*d*x**3/(8*sqrt(1 - e*
*2*x**2/d**2)) - e**2*x**5/(4*d*sqrt(1 - e**2*x**2/d**2)), True)) - 5*d**3*e**4*Piecewise((-2*d**4*sqrt(d**2 -
 e**2*x**2)/(15*e**4) - d**2*x**2*sqrt(d**2 - e**2*x**2)/(15*e**2) + x**4*sqrt(d**2 - e**2*x**2)/5, Ne(e, 0)),
 (x**4*sqrt(d**2)/4, True)) + d**2*e**5*Piecewise((-I*d**6*acosh(e*x/d)/(16*e**5) + I*d**5*x/(16*e**4*sqrt(-1
+ e**2*x**2/d**2)) - I*d**3*x**3/(48*e**2*sqrt(-1 + e**2*x**2/d**2)) - 5*I*d*x**5/(24*sqrt(-1 + e**2*x**2/d**2
)) + I*e**2*x**7/(6*d*sqrt(-1 + e**2*x**2/d**2)), Abs(e**2*x**2/d**2) > 1), (d**6*asin(e*x/d)/(16*e**5) - d**5
*x/(16*e**4*sqrt(1 - e**2*x**2/d**2)) + d**3*x**3/(48*e**2*sqrt(1 - e**2*x**2/d**2)) + 5*d*x**5/(24*sqrt(1 - e
**2*x**2/d**2)) - e**2*x**7/(6*d*sqrt(1 - e**2*x**2/d**2)), True)) + 3*d*e**6*Piecewise((-8*d**6*sqrt(d**2 - e
**2*x**2)/(105*e**6) - 4*d**4*x**2*sqrt(d**2 - e**2*x**2)/(105*e**4) - d**2*x**4*sqrt(d**2 - e**2*x**2)/(35*e*
*2) + x**6*sqrt(d**2 - e**2*x**2)/7, Ne(e, 0)), (x**6*sqrt(d**2)/6, True)) + e**7*Piecewise((-5*I*d**8*acosh(e
*x/d)/(128*e**7) + 5*I*d**7*x/(128*e**6*sqrt(-1 + e**2*x**2/d**2)) - 5*I*d**5*x**3/(384*e**4*sqrt(-1 + e**2*x*
*2/d**2)) - I*d**3*x**5/(192*e**2*sqrt(-1 + e**2*x**2/d**2)) - 7*I*d*x**7/(48*sqrt(-1 + e**2*x**2/d**2)) + I*e
**2*x**9/(8*d*sqrt(-1 + e**2*x**2/d**2)), Abs(e**2*x**2/d**2) > 1), (5*d**8*asin(e*x/d)/(128*e**7) - 5*d**7*x/
(128*e**6*sqrt(1 - e**2*x**2/d**2)) + 5*d**5*x**3/(384*e**4*sqrt(1 - e**2*x**2/d**2)) + d**3*x**5/(192*e**2*sq
rt(1 - e**2*x**2/d**2)) + 7*d*x**7/(48*sqrt(1 - e**2*x**2/d**2)) - e**2*x**9/(8*d*sqrt(1 - e**2*x**2/d**2)), T
rue))

________________________________________________________________________________________